PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Analytical structure factors for colloidal fluids with size and interaction polydispersities
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The hard spher& Yukawa fluid is considered as a model for a colloidal fluid. On the basis of the mean
spherical approximation solution of the Ornstein-Zernike equation, for the case of the closure relation consist-
ing of the sum of theM Yukawa terms with the factorizable coefficients, compact and useful expressions of
static structure factors are presented. The expressions are tractable for the hardvsptudaava fluid with
intrinsic size and interaction polydispersities as well as for the fluid with an arbitrary number of components.
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|. INTRODUCTION KM =KMdMd(" 1.2

Many colloidal fluids are polydisperse in size, shape, or,
interaction, due to the mesoscopic or macroscopic nature qﬁ

colloidal particles. Knowledge of polydispersity effects oN 4 qdition.the simple analytical expressions have been ob-
measurable quantities would be essential for us to understaq ined b’y many workers for thermodynamic quantifieS—

properties of colloids. Since such a colloidal fluid has m19]. Originally, the expressions are due to the special alge-

general a number of components_of a many _body SySten'fjraic form of Eq.(1.2). Such an investigation still has been
many workers approached the fluid by analytical methOd%rogressing[zo]

with the employment of the appropriate models. In particu- Now, such an investigation of the effect of the special
lar, analytical expressions for thg sta}tic structures have beeé]gebra,ic form of Eq(1.2) would be interesting in a struc-
g?sprgritéerzzrgfscpohneieerﬂﬂf5]S,tL;dg,%?yg;stgeersrgocdhﬂfgzg12%“““”" aspect of the_fluid as well. As seen below, th_e pursuit of
here fluid[6,7], and a polydisperse hard sphere Yukawathe _effect results in compact qnd useful expressions for the
;Ei d[8.9] v static structures: The expressions are tractable even for the
e fluid with intrinsic size and interaction polydispersities. In

whﬁ hp(i)slyg:)sr?seiéseereza[)deIz\rf)vheilflozgkg;lv%((eHr?]':)g) eiltjtle%sive Sec. II, we review briefly the MSA solution. Section Ill gives
models, including all the médels above as special cases the expressions of the static structure factors. A discussion is
far as the present authors are aware, no analytical expressfghven In Sec. IV.
for static structures has been studied yet for the polydisperse
HSMY fluid. The aim of the present paper is to present ana- Il. BRIEF REVIEW ON THE SOLUTION
lytical expressions of the partial structure factor, the total . . - .
structure factor, and the scattering function of the fluid. The L_etl us qohnsr:der theb HSdMY _ﬂwdf consisting of sph?ncal
expressions are based on the mean spherical approximati@r‘ri‘rt'C es with the number density o tmeomponentp]-. n.
(MSA) solution of the Ornstein-Zernik@2Z) equation in the th.e Baxter formalism, the formal SOIUt'(.)n c.’f the_ OZ equation
HSMY fluid with an arbitrary number of components. with the closure .Of Eqsl.19 and(1.1h is given in terms of
Now, in the HSMY fluid the MSA is defined by the fol- the Baxter functiorQ;;(r) as follows[10,11:

lowing closure relation for the OZ equation:

fact, this case gives considerable simplifications for solv-
g the system of equations and has been ugéf#-14. In

M
gi(1=0, r<oj=(oi+0)/2, (1.13 Q”(r)zQ?j(angl D{Ve ", (2.13
Mok
cij(r)=2 %ei“r, r>oj; (1.1  where
n=1
whereg;;(r) andc;;(r) are the radial distribution function 0, r>oj or r<\;=(oj—0y)/2

and the direct correlation function, respectively, ands the 1 A (r—
diameter of a hard-spherical particle of theomponent of Qo(r)= 2 (r=oi)(r=Xjp)Aj+(r—oi)B;

the fluid. The formal solution of the OZ equation with the ™" M

closure above is given in terms of the coefficients that are + 2 ijf‘)(e*znr_e*znvij), Ni<r<uj;.
defined to be the physical solution of the system of nonlinear n=1

algebraic equationgl0,11). (2.1b

Since the system of equations is too difficult to solve gen-
erally, one of the present authors considered the followingrhe Laplace transform d;;(r) is introduced by the defini-
factorizable casg12-14: tion as[10,17]]
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Qy(is)= [ “arq,ne
ji
M

=il oy (soy)Aj+ aler(soy) B+ 2 c

eZnO'i_e—SO'i 1_e—SO'i

stz, s

XeZnUij(

Zn)\JI

+ED

where ;(x)=[1—x/2— (1+x/2)e” X]/x3,
e %) /x?, and o(X)=(1—e ¥)/x.

(2.2

s+z,

e1(X)=(1-x

In order to give the most simple expressions for the coef-

ficients A;, B;, C’, andD{” above, let us follow our

previous work12,13. The special form of Eq(1.2) and the

basic assumption of the Baxter formalism permit us to write

the following expression foD(”).

D{V=—d{"aj"exi’?, (2.33

Whereaj(”) is determined later. This is the key expression to
make the problem remarkably simple. As in the previous

paper, we get the following:

Cf'=(d{" ~B{"/zy)aj" e, (2.3
M
Bi=~ oyt 2 AMa", (239
n=1
21T T
A= |1+ ziz +— 2 PMa™,  (2.3d
whereln=3pjof", A=1—m{4/6,
Bi(n)=27-rzI Pldfn)fo dr re”*"g; (r), (2.9
- 2w 2 (N) pzpo 2
A :_TZ pioy| Yi(znoy) o B e
1+Zn0'|/2
(M) o 20,12
Zon? } =
A
"= 2| pro X" — = z,A" (2.6

with

X{M=d{Me” @92+ o BVt 2po(z,0)) + o A,

(2.7

As is seen from Eq€2.33—(2.7), our problem is reduced
to determining the sfia{™ ,B{"™}. This set is determined by
the following equation$13,2Q:
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M m)
_ ) — ()3 (m)
E:]_ Zn+zm E p|[Z X x
+ XM = X("V11{™], (2.9
27KM™ -
Z_ndJ(n)e znaJ/2+2l al(n)zﬂﬂ
M
- aMa(™
m=1 Zn+Zm 2 p
X2 [T = 2o X(™) = TPX™]=0, 2.9

where

(n 2m 3
VAT :5j|0j<Po(Znt)—TP|(T|Uj 1(zy09), (2.10

o
5j|+0j2<Po(Znt) 53 1ol

7=

]

7752 Zn0|
28 T3

(2.11

2 3
3 PiojYa(zaog)| 1+

H(n)_ anJ/2+

ZnO'J' T )
1+ T)A(n)‘f'ﬂ()']zl p|cr|X|(” .
(2.12

Equationg2.8) and(2.9) are equivalent to Eq$29) and(31)
in Ref.[13], respectively.

SinceA™ and P are functions of B{"} as seen from
Egs. (2.5—(2.7, we can solve Eq(2.8) and get{a{"} in
terms of{B{"™}. The substitution of this result into E¢2.9)
gives us equations fo{B(”)} However, the equations ob-
tained still would be too compllcated to solve. As a matter of
fact, in the 1 Yukawa case the simple method of solution of
the equations has been given by BIi#1] and by Ginoza
[12-14. Such methods of solution have been progressing in
the M Yukawa case as we[R0,22.

lll. EXPRESSIONS OF STATIC STRUCTURE FACTORS

The partial structure factor related t@ndj components,
Sij(k), is calculated from the following general formula
[6,9]:

S (k)= &;;—2 Re{ys(ik)}ij1, 3.
where theij element of the symmetric matriy(s) is de-
fined by

(3.2

{')’s S)}Ij (cic; ) Pgij(s)

with the concentratiore;=p;/p, p being the total number
density, and the Laplace transform defined by
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‘%(s)zfo dr rg;;(r)e==". (33
The total structure factd®(k) is defined by

S=2. (€ic))s; (K. (3.4

Therefore, the calculation of the structure factors is reduced
to that of y4(s). Below, we shall present MSA expressions

of Sj(k) andS(k).

Now, the Laplace transform of the OZ equation in the
Baxter formalism yields with the use of the MSA solution

above[10,1]]

> 27Gi (S)[ 8 — ¢1pQy; (is)]

e— Sa'ij
SZ

So;
1+ A+ 5B,

M
Zn

n=1 S+ Zn

(3.9

ef(s+ zn)oijci(jn) ]

With the use of Eq(3.2), this equation can be written in a

matrix form as

Y4(s)Q(is) = A(s), (3.6)

where theij elements of the matriceé(is) and /A\(s) are
given by

{QUis)}j=a8;—(cic)Y%pQ(is), (3.7
(CiCj)l/2 _ Slof
Aij(S)Ep—e STij 1+7 Aj+SBj
M
1 Zn T (n)
From Eq.(3.6), we get
Ys(8)=A(s)R(s), 3.9
whereR(s) is defined by
Q(is)R(s)=1. (3.10
Now, with the use of Eq92.33—(2.3d), Eq. (3.8) gives
M+2
Ajj(9)=(cicp¥e = X w"(s)a|”, (3.1
n=1
where
aV=1, (3.123
a}z)z aj, (3.12h

a"P=a", (3.129
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1) 2 ST
W; (S):pEg 1+7 , (3133
W2(9)=p o st 72 (11351 3a3p
ST P AR A 2 /]
P So; A
Wi(””)(S):P(TST 1A
A m_ & o2
s(s+zn)( i Z, Bi"e '
(3.130

with n=1,2,... M and

Z}n)=d}n)e_zngi/2,

while the substitution of Eq2.2) into Eq.(3.7) and the use
of Egs.(2.39—(2.3d yield

M+2
{QUis)k; =8 —(cic)Y2e™i 2, YM(s)af™,
n=1
(3.19
where
(1) 27p 3
YiT(s)= N P1(soy), (3.153
(2) _ Ky 7T§2 3 2
Yi“(s)= A A G i(soi) +aiei(soi)
(3.15h
+2 mP™ 3 2
Y{""2(s)=p ot yi(soi) + Aot e(say)
e*Zn(Ti
+ Zi(n)_ —— Bi(n)eznuilz)
n
ezno'i _ e*SO'i 1— e*So'i Zi(n)ezno'i
( stz, S )_ s+z,
(3.150
withn=1,2,... M.
Equations(3.10 and(3.14 give
M+2
Rij(S) = 5” + (CiCj)llzeS}\ij nzl Yi(n)(s)l—](n)(s)a
(3.16
whereR;;(s) is theij element oﬂei(s) and
L}”)(S)ECJ—’“ZEI: c%eMiai"Rji(s). (3.1
From Egs.(3.16 and(3.17), we get
M+2
LiM(s)= o™+ mE:l FOm(s)Li™(s),  (3.18
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where
|:<“’m>(s)=2i cialMY(™(s), (3.19
Therefore
M+2
L}n)(S): 2 G(n’m)(S)a}m), (32@

where GM(s) is the (,m) element of matrixG(s) de-
fined by

G(s)[1-F(s)]=1, (3.2

the (n,m) element of the matriE(s) being F(™™(s).
Therefore, from Egs(3.9), (3.11), and (3.16), with the
use of Egs(3.18, (3.19, and(3.20 we get

M+2 M+2
{&s(s)}ij :(Cicj)llzefsaij nzl m}_:l Wi(n)(S)G(n,m)(S)aJ(m)_

Substitution of this equation into E¢3.1) gives
Sij(k)=&;—(cicj) 2

M+2 M+2

xRe[eSfqu > W (s)GMM(s)a™
n=1 m=1

s=ik
(3.22
From Egs.(3.4) and(3.22, we get
M+2 M+2
S(k)=1-2 Re{ > 2 Fw><s>e<”*m><s>Fi,m><s>} ,
n=1 m=1 s=ik
(3.23
where
Fg;‘)(s)zZ cie so2w("(s), (3.243
Fg“)(s)EEi cie 2" (3.24h

The substitutions of Eq$3.129—(3.129 into (3.24h and
Egs.(3.133—(3.139 into (3.243 give explicit expressions of
F™ and F{"V, respectively. On the other hand, from Eq.
(3.21) the expression d&(™™ is obtained in terms o (™™,
which is calculated with the substitution of EqR.129—
(3.120 and Eqgs(3.153—(3.159 into Eq.(3.19. Thus, from
Egs.(3.22 and(3.23 we now obtain explicit analytical ex-
pressions of the static structure factors.
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IV. DISCUSSION

In Sec. lll, for the HSMY fluid with an arbitrary number
of components we gave analytical expressions of the partial
static structure factor and the total static structure factor,
given by Eqgs(3.22 and(3.23), respectively. As for the co-
herent scattering intensityk), it can be written in terms of

S (k) as[23]
l(k>=p; (cic) Y2 (k) F;(K) S, (K), (4.)

whereF;(k) is the form factor of the spherical particle of the
j component. The substitution of E¢3.22 into Eq. (4.1
yields

1(0=p2 ¢[F;(K)*~2p

M+2 M+2
XRe{ > > 1M mm k)™ (k) |, (4.2

n=1 m=1

where

k=2 cje kiR (kwi"(ik), (4.33

]
I(an)(k)EE Cje—ika'j/ZFj(k)a](n) . (43b)

]

Thus, the main result of the paper is the compact and
useful expressions df;;(k), S(k), andI(k). The expres-
sions are very tractable in applications since the applications
become possible by simply performing the component sums
independently for each components, as seen from Egs.
(3.19, (3.249, (3.24b, (4.33, and(4.3b). It is obvious from
the derivation in Sec. lll that the origin of such characteris-
tics of the expressions is the special algebraic form of Eq.
(1.2). The application has been reported already in the intrin-
sically polydisperse hard sphere Yukawa fl{€d.

Recently, the MSA formula for the scattering intensity
from multicomponent mixtures of charged hard spheres has
been reported7]. The formula is obtained from

S (K ={[QKQ(—K) ],

whereQ(k) is the Baxter's matrix. This route is somewhat
different from that in Sec. Ill. Both routes, however, must be
equivalent as long as the Baxter’s basic assumptio® @4

is satisfied.
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